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Outline of Talk

¥ Introduction to Network Processors
¥ IPv4 benchmark Implementation

—Intel IXP1200
—Motorola C-Port C-5

¥ Results & Analysis
—Throughput, Communication needs, Programming

effort

¥ Observations
¥ Summary and conclusions
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Equipment Centric View —
Router/Switches are most common systems

Access
Ethernet

Hubs
LAN

Switchin
g

Ethernet

Gigabit 802.11

10/100

LAN
Bridges

Token
Ring

FDDI Wireles
s

Edge
Termination

IADs

Cable

Access
Concentrators

Modems

xDSL

Line Cards

Analog
ISDN

NICs

Telephony

VLAN
Gateways

VoDSL VoIP
VoATM

DSLAMs

Multiplexors

Multiservice
Concentrators

WAN Packet
Switching

IPv4

ATM Frame
Relay

X.25,
SDMS

MPLS

WAN
Bridging /
Aggregatio

n

Inv. Mux
over ATM

IP over
ATM

Firewall
s &

VPNs

Private/DCS
over ATM

VPN
Switch NAT

Router

L3+ Equipment

L3+ Policy-based
Redirection

SSL
Acceleration

Network
Storage /
Caching

L3+ Load
Balancing

Optical
cross-

connection

Framers

Packet
over

SONET

ATM
over

WDM
SONET

ATM
over

SONET

Backbone
Routers

ATM
IP

Frame
Relay

Edge

WAN
Circuit

Switching

xDSL ISDN

Core



CASES03 Chidamber Kulkarni
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Kernels for Packet Processing

¥ Pattern Matching and Feature Extraction
—Find Expression and extract a related value from packet

¥ Lookup
—Find path based on destination address and extracted

features

¥ Computation
—Checksum (CRC), encryption, fragmentation and

reassembly

¥ Header Manipulation
—TTL, Flags, add/replace tags and header fields

¥ Queue Management
—Buffering, Storage and Scheduling of Packets

¥ Control Processing
—Exceptions, table updates, statistics, NP state
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Parallelism: Peak Performance and
# of Cores
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Intel IXP1200
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Motorola C-Port C-5
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Challenge: Architecture Development/Evaluation

¥ Multi-dimensional concerns

—Number of parallel cores per chip, Type of core
—Number of instructions per core, Functionality per

instruction
—Number and type of coprocessors, task distribution, etc.
—Memory hierarchy and on-chip communication
—Number and type of interfaces and peripherals

¥ Architectural Development Framework for specification,
implementation, integration, and verification of
heterogeneous concurrent processors

¥ Which of existing architectures is optimal(?) and fits best ?

—Need to measure and compare architectures

—That s benchmarking !
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Challenge: Architecture Deployment
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Mapping & SchedulingMapping & Scheduling¥ Identify critical path (dataflow)
— Header: FifoRx- RSRAM — ALU — RSRAM — FIFOTx

— Payload: FifoRx — SDRAM — FIFOTx (uE
controlled)

¥  Interleave tasks w/ respect to communication
— Assign uE/packet or piplined packet flow?
— Hide comm. latencies by hardware (!)

multithreading

¥  Support NW data types
— Exploit provided bit level Ops (ASM macros)
— Solve packet level data types (not supported)
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IPv4 Forwarding Benchmark
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Packet Forwarding Functionality
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Packet Forwarding on NP
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Programming IXP1200

¥ Micro-engine programming (similar to programming a
RISC core without a cache)

¥ Interfaces (memories and external MAC unit)
—Micro-engine to SDRAM, Micro-engine to SRAM,

Micro-engine to Scratchpad, Micro-engine to IX
bus unit

—IX bus unit to SDRAM
—Additional attention for non 64-byte aligned (or

multiples) packets
¥ Impact of input packet sizes
¥ Scheduling freedom
¥ Partitioning
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Challenges in Programming IXP1200

¥ Architecture related:
—Difficult to determine the right partitioning over

different threads and micro-engines
—Programming overhead for non 64-byte multiple

packets
—IX bus unit - a bottleneck for higher throughput

¥ Managing transmit state machine
¥ Queue management issues for internet traffic mix

¥ Software environment related:
—IXP1200 library of elements has more layers

(simpler hardware); potentially more development
effort?
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Influence of Interfaces on Throughput?

0

200

400

600

800

1000

1200

T
h

ro
u

g
h

p
u

t 
(M

b
/s

)

256 512 1024 2048 8192

Buffer Size Entries

64 byte packets;
simple route table

0

200

400

600

800

1000
1200

1400

1600

T
h

ro
u

g
h

p
u

t 
(M

b
/s

)

80MHz 133MHz 200MHz

IX Bus Clock Frequency

0

200

400
600

800
1000

1200

1400

1600

T
h

ro
u

g
h

p
u

t 
(M

b
/s

)

200MHz 300MHz 400MHz 500MHz

IXP1200 Clock Frequency



CASES03 Chidamber Kulkarni

Architectural Bottlenecks in
IXP1200?

¥ Performance limited (probably) by
—external MAC buffer size
—the IX bus connecting the external MAC to

the IXP1200
—IXP1200 clock frequency

—In fact - none of the above, we found it to
be a 

¥ Trade-off between a dynamic assignment of
transmit FIFO and a static (fixed) assignment
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IXP1200 Transmit State Machine
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Programming C-Port C-5

¥ Channel Processor programming (similar to
programming a RISC core with an SRAM)

¥ Interfaces (memories and SDP)
—CP to Queue management unit (SRAM), CP to

table lookup unit (SRAM), CP to buffer
management unit (SDRAM)

—CP to serial data processors (setting bits in control
registers)

¥ Scheduling freedom
—Performance estimation is better due to upper/lower bounds

on off-chip resource access times

¥ Partitioning
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Challenges in Programming C-5

¥ Debugging micro-code for serial data processors
(SDPs) can be painful (need for good libraries)

¥ Software environment needs more maturity —
debugging concurrent code through gdb is difficult

¥ API is vast — still needs some support for
programming choices

¥ Unclear yet how to tune performance for a complex
packet mix
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Throughput for IXP and C-5
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¥ SRAM bus in IXP however, has a much higher utilization than
combination of Global and Ring bus in C-5
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Comparing IXP vs C-5 Programming

¥ Functional correctness
—IXP1200 requires a larger programming effort

compared to C-5
—Main reasons for the difference are:

¥ Vast API of C-5 aided by
—Specialization of interfaces
—Configurable MAC’s

¥ Performance tuning
—Not yet clear since C-5 is over-powered for our

benchmark as compared to IXP1200
—Mostly related to the (micro-) architectural details

(nuances?) for IXP1200
¥ In summary, if possible arbitration and scheduling

should be made deterministic to help programming
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Observations on Programming
Model

¥  Programming network processors
—partitioning application to (multiple) PEs/Threads
—Scheduling tasks according to packet flow
—Multi-PE and multi-resource (storage)

communication
—Little support for integrated decisions for the above

issues as of now

¥ Programmability
—partitioning, scheduling, cost of communication,

scalability, performance determination
—simple and predictable architecture



CASES03 Chidamber Kulkarni

In Summary 

¥ Diverse architectures for similar problems
—For IPv4 forwarding we have a better idea
—What happens if we add all couple of more applications?

¥ Any successful adoption and deployment of NPUs
depends on ease of programming
—Enable an integrated development environment that supports

design space exploration and decisions related to the three
key aspects

—Potential ways to achieve this 
¥ Complex architectural trade-offs need to be made to enable a

simple and useful programming model
¥ How about building an architecture for a given programming

model (derived from application model)?


