
CASES03 Chidamber Kulkarni

Programming Challenges in
Network Processor

Deployment

Chidamber Kulkarni*, Christian Sauer, Matthias Gries,
Kurt Keutzer

University of California, Berkeley
Infineon Technologies, Munich

* Now at Xilinx Inc

CASES03 Chidamber Kulkarni

Outline of Talk

¥ Introduction to Network Processors
¥ IPv4 benchmark Implementation

—Intel IXP1200
—Motorola C-Port C-5

¥ Results & Analysis
—Throughput, Communication needs, Programming

effort

¥ Observations
¥ Summary and conclusions

CASES03 Chidamber Kulkarni

Applications

Edge Router
Backbone

Switch

Workgroup
Switch

Optical Access
Switch

Terabit Router

IP/ATM Switch

2,5 Gb/s

10 Gb/s

40 Gb/s

...

155 Mb/s

10 Mb/s

64 kb/s

100 Mb/s

Access Edge . Core

SoHo
Router

DSLAM

RAS
Server

NIC

Firewall
Access Router

Web Switch

Modem

SetTopBox

Phone

CASES03 Chidamber Kulkarni

Equipment Centric View —
Router/Switches are most common systems

Access
Ethernet

Hubs
LAN

Switchin
g

Ethernet

Gigabit 802.11

10/100

LAN
Bridges

Token
Ring

FDDI Wireles
s

Edge
Termination

IADs

Cable

Access
Concentrators

Modems

xDSL

Line Cards

Analog
ISDN

NICs

Telephony

VLAN
Gateways

VoDSL VoIP
VoATM

DSLAMs

Multiplexors

Multiservice
Concentrators

WAN Packet
Switching

IPv4

ATM Frame
Relay

X.25,
SDMS

MPLS

WAN
Bridging /
Aggregatio

n

Inv. Mux
over ATM

IP over
ATM

Firewall
s &

VPNs

Private/DCS
over ATM

VPN
Switch NAT

Router

L3+ Equipment

L3+ Policy-based
Redirection

SSL
Acceleration

Network
Storage /
Caching

L3+ Load
Balancing

Optical
cross-

connection

Framers

Packet
over

SONET

ATM
over

WDM
SONET

ATM
over

SONET

Backbone
Routers

ATM
IP

Frame
Relay

Edge

WAN
Circuit

Switching

xDSL ISDN

Core

CASES03 Chidamber Kulkarni

Router Building Blocks

Linecard

Linecard

NPU
Ser
Des

CL TL CR

Traffic Mgr

switch fabric

Ser
Des

Ser
Des

Ch
Proc

Back
plane

Ch
Proc

<
>

POS
Framer

NPU
Traffic

Mgr
Ser
Des

SONET
PHY

<
>

GbE
MAC

GbE
PHY

...

<
>

GbE
MAC

GbE
PHY

10 Gb/s 8x 1,25 Gb/s 64 x 200MHz

SPI4 Utopia 4

1 Gb/s

GMII

8x125 MHz

...

CASES03 Chidamber Kulkarni

Kernels for Packet Processing

¥ Pattern Matching and Feature Extraction
—Find Expression and extract a related value from packet

¥ Lookup
—Find path based on destination address and extracted

features

¥ Computation
—Checksum (CRC), encryption, fragmentation and

reassembly

¥ Header Manipulation
—TTL, Flags, add/replace tags and header fields

¥ Queue Management
—Buffering, Storage and Scheduling of Packets

¥ Control Processing
—Exceptions, table updates, statistics, NP state

CASES03 Chidamber Kulkarni

Parallelism: Peak Performance and
of Cores

≤≤≤≤ 150 MHz ≤≤≤≤ 250 MHz ≤≤≤≤ 350 MHz ≤≤≤≤ 450 MHz ≤≤≤≤ 1.4 GHz

OC-768

OC-192

OC-48

1 2 4 8 16 32 64 128 256 512

5.0 Gb/s

10 Gb /s

20 Gb /s

40 Gb /s

80 Gb /s

2.5 Gb/s

1234567

8

9

10

11

121314

1516
17

18

1920

21

Number of embedded Cores →→→→

[7] Mindspeed CX27470
[6] AMCC nP/7120
[5] Vitesse IQ2000
[4] Agere PayloadPlus
[3] Intel IXP1200
[2] Intel IXP 2400
[1] Cisco PXF

[14] Clearwater CNP810
[13] AMCC nP/7510
[12] Intel IXP2800

[18] Cog nigine RCU/RSF
[17] Lexra Netvortex
[16] EZchip NP-1
[15] Clearspeed

[21] EZchip NP-2
[20] Xel. Packet Dev.
[19] Clearspeed

[11] PMC Rm9000x2
[10] Broadcom 12500
[9] IBM PowerNP
[8] Motorola C-5

CASES03 Chidamber Kulkarni

Intel IXP1200

CASES03 Chidamber Kulkarni

Motorola C-Port C-5

CASES03 Chidamber Kulkarni

Challenge: Architecture Development/Evaluation

¥ Multi-dimensional concerns

—Number of parallel cores per chip, Type of core
—Number of instructions per core, Functionality per

instruction
—Number and type of coprocessors, task distribution, etc.
—Memory hierarchy and on-chip communication
—Number and type of interfaces and peripherals

¥ Architectural Development Framework for specification,
implementation, integration, and verification of
heterogeneous concurrent processors

¥ Which of existing architectures is optimal(?) and fits best ?

—Need to measure and compare architectures

—That s benchmarking !

CASES03 Chidamber Kulkarni

Challenge: Architecture Deployment

Sched

MescalPort(0)

TraceReader

TraceWriter

MescalPort(1)

TraceReader

TraceWriter

MescalPort(14)

TraceReader

TraceWriter

MescalPort(15)

TraceReader

TraceWriter

Unqueue CheckIPHeader GetIPAddress

CheckPaint

Discard

Discard

DecIPTTL Discard

IPFragmenter Discard

CheckPaint Discard

DecIPTTL Discard

IPFragmenter Discard

LookupIPRoute

DropBroadcasts

Click RouterClick Router

µµµµEngµµµµEng µµµµEngµµµµEngµµµµEngµµµµEng

4kB4kB 4kB4kB 4kB4kB

ARMARM 16kB I$16kB I$

8kB D$8kB D$

Ext.
SRAM
Ext.

SRAM

µµµµEngµµµµEng µµµµEngµµµµEng µµµµEngµµµµEng

4kB4kB 4kB4kB 4kB4kB

IX
Bus
IX

Bus

Ext.
SDRAM
Ext.

SDRAM

PCI
Bus

PCI
Bus

IXP 1200IXP 1200

4kB4kB

µEngµEng

IX
Bus
IX

Bus

4kB4kB

µEngµEng

IX
Bus
IX

Bus

4kB4kB

µEngµEng
4kB4kB

µEngµEng

Mapping & SchedulingMapping & Scheduling¥ Identify critical path (dataflow)
— Header: FifoRx- RSRAM — ALU — RSRAM — FIFOTx

— Payload: FifoRx — SDRAM — FIFOTx (uE
controlled)

¥ Interleave tasks w/ respect to communication
— Assign uE/packet or piplined packet flow?
— Hide comm. latencies by hardware (!)

multithreading

¥ Support NW data types
— Exploit provided bit level Ops (ASM macros)
— Solve packet level data types (not supported)

CASES03 Chidamber Kulkarni

Outline of Talk

¥ Introduction to Network Processors
¥ IPv4 benchmark Implementation

—Intel IXP1200
—Motorola C-Port C-5

¥ Results & Analysis
—Throughput, Communication needs, Programming

effort

¥ Observations
¥ Summary and conclusions

CASES03 Chidamber Kulkarni

IPv4 Forwarding Benchmark

Port 0

Port 1

Port 2

Port 15

.

.

.

IP Forwarding
Engine

Port 0

Port 1

Port 2

Port 15

.

.

.

Ingress
Ports FIFOs Functionality FIFOs

Egress
Ports

IP Forwarding
Engine

IP Forwarding
Engine

CASES03 Chidamber Kulkarni

Packet Forwarding Functionality

Check IP
Version field

Perform Checksum
on Header

Discard Packet if
Illegal src/dst

Check for
TTL > 1

Extract Dest
IP Address

Look up IP
Route

Decrement TTL

CheckIPHeader

GetIPAddress LookupIPRoute DecIPTTL

Outgoing
IP Packets

Incoming
IP Packets

CASES03 Chidamber Kulkarni

Packet Forwarding on NP

Check IP
Version field

Perform Checksum
on Header

Discard Packet if
Illegal src/dst

Check for
TTL > 1

Extract Dest
IP Address

Look up IP
Route

Decrement TTL

Outgoing
IP Packets

Get packet from
External MAC into NP

Extract Header from
Ethernet IP Packet

Write Payload to
External Storage

Write Modified Header
Into the Ext Storage

Write Packet from
Ext Storage to the Ext MAC

Incoming
IP Packets

CASES03 Chidamber Kulkarni

Packet Forwarding on NP

Check IP
Version field

Perform Checksum
on Header

Discard Packet if
Illegal src/dst

Check for
TTL > 1

Extract Dest
IP Address

Look up IP
Route

Decrement TTL

Outgoing
IP Packets

Get packet from
External MAC into NP

Extract Header from
Ethernet IP Packet

Write Payload to
External Storage

Write Modified Header
Into the Ext Storage

Write Packet from
Ext Storage to the Ext MAC

Incoming
IP Packets Receive Thread

Transmit Thread

CASES03 Chidamber Kulkarni

Programming IXP1200

¥ Micro-engine programming (similar to programming a
RISC core without a cache)

¥ Interfaces (memories and external MAC unit)
—Micro-engine to SDRAM, Micro-engine to SRAM,

Micro-engine to Scratchpad, Micro-engine to IX
bus unit

—IX bus unit to SDRAM
—Additional attention for non 64-byte aligned (or

multiples) packets
¥ Impact of input packet sizes
¥ Scheduling freedom
¥ Partitioning

CASES03 Chidamber Kulkarni

Challenges in Programming IXP1200

¥ Architecture related:
—Difficult to determine the right partitioning over

different threads and micro-engines
—Programming overhead for non 64-byte multiple

packets
—IX bus unit - a bottleneck for higher throughput

¥ Managing transmit state machine
¥ Queue management issues for internet traffic mix

¥ Software environment related:
—IXP1200 library of elements has more layers

(simpler hardware); potentially more development
effort?

CASES03 Chidamber Kulkarni

Influence of Interfaces on Throughput?

0

200

400

600

800

1000

1200

T
h

ro
u

g
h

p
u

t
(M

b
/s

)

256 512 1024 2048 8192

Buffer Size Entries

64 byte packets;
simple route table

0

200

400

600

800

1000
1200

1400

1600

T
h

ro
u

g
h

p
u

t
(M

b
/s

)

80MHz 133MHz 200MHz

IX Bus Clock Frequency

0

200

400
600

800
1000

1200

1400

1600

T
h

ro
u

g
h

p
u

t
(M

b
/s

)

200MHz 300MHz 400MHz 500MHz

IXP1200 Clock Frequency

CASES03 Chidamber Kulkarni

Architectural Bottlenecks in
IXP1200?

¥ Performance limited (probably) by
—external MAC buffer size
—the IX bus connecting the external MAC to

the IXP1200
—IXP1200 clock frequency

—In fact - none of the above, we found it to
be a

¥ Trade-off between a dynamic assignment of
transmit FIFO and a static (fixed) assignment

CASES03 Chidamber Kulkarni

IXP1200 Transmit State Machine

CASES03 Chidamber Kulkarni

Programming C-Port C-5

¥ Channel Processor programming (similar to
programming a RISC core with an SRAM)

¥ Interfaces (memories and SDP)
—CP to Queue management unit (SRAM), CP to

table lookup unit (SRAM), CP to buffer
management unit (SDRAM)

—CP to serial data processors (setting bits in control
registers)

¥ Scheduling freedom
—Performance estimation is better due to upper/lower bounds

on off-chip resource access times

¥ Partitioning

CASES03 Chidamber Kulkarni

Challenges in Programming C-5

¥ Debugging micro-code for serial data processors
(SDPs) can be painful (need for good libraries)

¥ Software environment needs more maturity —
debugging concurrent code through gdb is difficult

¥ API is vast — still needs some support for
programming choices

¥ Unclear yet how to tune performance for a complex
packet mix

CASES03 Chidamber Kulkarni

Outline of Talk

¥ Introduction to Network Processors
¥ IPv4 benchmark Implementation

—Intel IXP1200
—Motorola C-Port C-5

¥ Results & Analysis
—Throughput, Communication needs, Programming

effort

¥ Observations
¥ Summary and conclusions

CASES03 Chidamber Kulkarni

Throughput for IXP and C-5

0

200

400

600

800

1000

1200

1400

1600

1800

64 128 256 512 1024 1280 1518

Packet size [byte]

Th
ro

ug
hp

ut
 [M

b/
s]

IXP 1200 C-Port

C-5 achieves a higher throughput for all packet sizes and is
less sensitive to packet sizes compared to IXP

CASES03 Chidamber Kulkarni

0
5

10
15
20
25
30
35
40

72 128 192 256 512
Packet size [byte]

U
til

iz
at

io
n

[%
]

Global Bus Payload Bus Ring Bus

CPort C-5

64 128 192 256 512
Packet size [byte]

U
til

iz
at

io
n

[%
]

SRAM Bus SDRAM Bus

IXP1200

0
5

10
15
20
25
30
35
40

Bus load for IXP and C-5

¥ SDRAM bus in IXP has a similar utilization as the Payload bus in C-5
¥ SRAM bus in IXP however, has a much higher utilization than
combination of Global and Ring bus in C-5

CASES03 Chidamber Kulkarni

IXP
1200

C-5 2090

812 1204784

0 1000 2000 3000 4000

Executed Cycles / 128 byte Packet

1710

Computation Communication Idle

550

391

26

192

704

37

0 250 500 750 1000 1250

Lines of Code

Computation Communication Initialization

Programming Effort

Similar programming effort but dissimilar achieved throughputs

CASES03 Chidamber Kulkarni

Comparing IXP vs C-5 Programming

¥ Functional correctness
—IXP1200 requires a larger programming effort

compared to C-5
—Main reasons for the difference are:

¥ Vast API of C-5 aided by
—Specialization of interfaces
—Configurable MAC’s

¥ Performance tuning
—Not yet clear since C-5 is over-powered for our

benchmark as compared to IXP1200
—Mostly related to the (micro-) architectural details

(nuances?) for IXP1200
¥ In summary, if possible arbitration and scheduling

should be made deterministic to help programming

CASES03 Chidamber Kulkarni

Outline of Talk

¥ Introduction to Network Processors
¥ IPv4 benchmark Implementation

—Intel IXP1200
—Motorola C-Port C-5

¥ Results & Analysis
—Throughput, Communication needs, Programming

effort

¥ Observations
¥ Summary and conclusions

CASES03 Chidamber Kulkarni

Observations on Programming
Model

¥ Programming network processors
—partitioning application to (multiple) PEs/Threads
—Scheduling tasks according to packet flow
—Multi-PE and multi-resource (storage)

communication
—Little support for integrated decisions for the above

issues as of now

¥ Programmability
—partitioning, scheduling, cost of communication,

scalability, performance determination
—simple and predictable architecture

CASES03 Chidamber Kulkarni

In Summary

¥ Diverse architectures for similar problems
—For IPv4 forwarding we have a better idea
—What happens if we add all couple of more applications?

¥ Any successful adoption and deployment of NPUs
depends on ease of programming
—Enable an integrated development environment that supports

design space exploration and decisions related to the three
key aspects

—Potential ways to achieve this
¥ Complex architectural trade-offs need to be made to enable a

simple and useful programming model
¥ How about building an architecture for a given programming

model (derived from application model)?

